Land conversion module (39_landconversion)¶
The land conversion cost module calculates costs for conversion of land from one land type to another (e.g. cost of land conversion from forest to cropland). Besides investments in technological change (13_tc) and trade (21_trade), land expansion is a major option of the model to increase regional supply.
In order to calculate the total land conversion costs the module needs to receive information about the land-use pattern before (inital) and after the optimization. Land-use change is represented by the difference of optimized and inital land-use patterns.
Interfaces¶
Input¶
Name Description Unit A $vm\_land$ areas of the different land types mio.ha x $pcm\_land$ current area of different land types mio. ha x $pm\_interest$ real interest rate in each region - x $pm\_annuity\_due$ annuity-due annual cash flows over n years in each region - x $im\_years$ years between previous and current time step years x $fm\_years$ all years of the t_all data set (1995 to 2150 in 5 year time steps) years x $fm\_gdp\_pc$ GDP per capita - MER US$ 2005 x $sm\_invest\_horizon$ investment time horizon years x
The last columns of the table indicate the usage in the different realizations (numbered with capital letters)
Output¶
_Name Descroption Unit vm_costs_landcon land conversion costs for each cell and each land pool mio US$
Interface plot¶

Figure 0: Information exchange among modules
Realizations¶
(A) calib_JUN13 (default)¶
In this realization, per hectare land conversion costs depend on GDP. At first, a minimum ($s39\_low\_lndcon$) and maxium ($s39\_high\_lndcon$) inital value of per hectare land conversion costs are defined in the GAMS code. Second, $s39\_low\_lndcon$ is assigend to the region with the lowest inital GDP, while $s39\_high\_lndcon$ is assigned to the region with the highest inital GDP. The range of inital per hectare land conversion costs is land pools specific and loaded from a file ($f39\_lndc\_bound(land,bound39)$). The range of inital per hectare land conversion costs to forestry land, derived from Sathaye1 et. al., differs from the range of crop, pasture and urban per hectare land conversion costs.
Default values:
Conversion to crop, pasture, urban: 3000 (low), 13000 (high) [US\$ per ha]
Conversion to forestry: 849 (low), 2484 (high) [US\$ per ha]
\begin{equation}
p39\_par\_a(land) = \frac{f39\_low\_bound(land,"low")-f39\_high\_bound(land,"high")}{s39\_min\_gdp-s39\_max\_gdp}
\end{equation}
\begin{equation}
p39\_par\_b(land) = f39\_low\_bound(land,"low")-p39\_par\_a(land)\cdot s39\_min\_gdp;
\end{equation}
In future time steps inital per hectare land conversion costs are scaled with GDP:
\begin{equation}
p39\_lndcon\_costs(t,i,land) = \Big(s39\_par\_a \cdot fm\_gdp\_pc(t,i)+s39\_par\_b \Big)\cdot p39\_lndcon\_type(land)
\end{equation}
Land conversion costs are calculated according to the following equation
\begin{equation}
vm\_cost\_landcon(j,land) = \frac{\sum\limits_{si}\Big(vm\_land(j,land,si) - pcm\_land(j,land,si)\Big)\cdot \sum\limits_{i(j)}pc39\_lndcon\_costs(i,land)}{\sum\limits_{i(j)}pm\_annuity\_due(i)} + pc39\_cost\_landcon\_past(j,land);
\end{equation}
As no appropriate dataset for the determination of land conversion costs exists, land conversion costs per hectare are calibrated based on model output evaluation with respect to carbon emissions.
Definitions¶
Name Description Unit A $p39\_lndcon\_costs(t,i,land)$ land conversion costs US\$ per ha x $pc39\_cost\_landcon\_past(j,land)$ Current costs for landconversion from the past mio. US\$ x $v39\_cost\_landcon\_annuity(j,land)$ Annuity costs of landconversion in the current timestep mio. US\$ x $p39\_par\_a(land)$ Slope capita per ha x $p39\_par\_b(land)$ Intercept US\$ per ha x $p39\_lndcon\_type(land)$ binary; indicates for which land types land conversion costs are applicable - x $s39\_min\_gdp$ minimum gdp_pc of all regions in 1995 US\$ per capita x $s39\_max\_gdp$ maximum gdp_pc of all regions in 1995 US\$ per capita x $bound39$ Set containing bound types for land conversion costs low,high x
The last columns of the table indicate the usage in the different realizations (numbered with capital letters)
Developer(s)¶
Florian Humpenöder, Jan Philipp Dietrich
See Also¶
13_tc,21_trade, 30_crop, 31_pasture, 32_forestry, 33_forest, 34_urban, 35_other
References¶
1 Sathaye, J., Makundi, W., Dale, L., Chan, P., Andrasko, K., 2005. GHG Mitigation Potential, Costs and Benefits in Global Forests: A Dynamic Partial Equilibrium Approach. Lawrence Berkeley National Laboratory.