Project

General

Profile

Carbon removal module (58_carbon_removal)

Description

The carbon removal module calculates the amount of terrestrial/land-based carbon dixoide removal (t-CDR) and the associated costs. The economic incentive for t-CDR is a reward (carbon price) for negative carbon emissions (see 57_maccs).

Interfaces

Input

Name Description Unit A B
$sm\_invest\_horizon$ investment time horizon years x
$fm\_GE\_content$ Gross energy content GJ per ton DM x
$vm\_btm\_reg(i)$ emissions before technical mitigation Tg N2O-N CH4 and CO2-C) x

The last columns of the table indicate the usage in the different realizations (numbered with capital letters)

Output

Name Description Unit
$vm\_cost\_cdr(i)$ carbon dioxide removal costs mio. US$

Interface plot


Figure 0: Information exchange among modules

Realizations

(A) beccs_mar14

In the beccs realization, bioenergy usage in combination with carbon capture and storage (BECCS) is derived endogenously1. The deployment of BECCS removes carbon dioxide from the atmosphere. These negative carbon emissions are multiplied with the carbon price (in the 57_maccs module), which results in a negative cost term that lowers the total global costs in the goal function of MAgPIE. Because the objective function of MAgPIE is the minimization of total global costs, the price on carbon emissions serves as incentive for the deployment of BECCS.

Total (positive) costs associated with CCS that enter the objective function.

\begin{equation}
vm\_cost\_cdr(i) = v58\_cost\_energy(i) + v58\_cost\_ccs(i)
\end{equation}

Total costs for energy production lowered by energy prices. The value of energy produced due to bioenergy CCS is disregarded if $s58\_energy\_price$ = 0 (default). Levelized costs of energy (LCOEs) are calculated using $sm\_invest\_horizon$.

\begin{equation}
v58\_cost\_energy(i) = \sum \limits_{tech58} p58\_lcoe(i,tech58)-s58\_energy\_price) * v58\_secondary\_energy(i,tech58)
\end{equation}

Total CCS costs (transport and injection). Levelized costs for transportation and injection of captured carbon are at 9 $/tCO23.

\begin{equation}
v58\_cost\_ccs(i) = - vm\_btm\_reg(i,\text{"beccs"}) * s58\_injection\_costs
\end{equation}

As biomass can be traded, the location of geological carbon storage can differ from the location of biomass production.

\begin{equation}
\sum \limits_{i,tech58} v58\_biomass\_use(i,kbe58,tech58) = \sum \limits_{i} vm\_prod\_reg(i,kbe58)
\end{equation}

Three different conversion routes for BECCS exist in the model: biomass to hydrogen (B2H2), biomass integrated gasification combined cycle, and biomass to liquid (B2L) (Klein et al 2014).

\begin{equation}
v58\_secondary\_energy(i,tech58) = \sum \limits_{kbe58} v58\_biomass\_use(i,kbe58,tech58) * fm\_GE\_content(kbe58) * f58\_conversion\_eff(tech58)
\end{equation}

Negative carbon emissions from the combination of bioenergy with CCS.

\begin{equation}
vm\_btm\_reg(i,\text{"beccs"}) = - \sum \limits_{kbe58,tech58} v58\_biomass\_use(i,kbe58,tech58) * s58\_DM\_to\_C * f58\_capture\_rate(tech58)
\end{equation}

The geological carbon storage capacity for CCS is constrained at the regional level, which adds up to 3960 GtCO2 at the global level2. We assume a lifetime of the CCS technology of 200 years (Szulczewski et al 2012) and therefore limit the annual geological injection of carbon to 0.5%/yr in terms of the geological carbon storage capacity, which results in an annual realizable geological injection rate of about 20 GtCO2/yr globally.

\begin{equation}
pc58\_storage\_used(i) + (- vm\_btm\_reg(i,\text{"beccs"})) = f58\_storage\_capacity(i)
\end{equation}

Limitations
Bioenergy deployment in this realisation stronly depends on the assumptions for available geological storage capacity.

(B) off (default)

In the off realization, CDR resulting from BECCS deployment is not rewarded.

Definitions

Name Description Unit A B
$p58\_lcoe(i,tech58)$ LCOE US Dollar per GJ x
$v58\_cost\_energy(i)$ costs for energy production lowered by energy prices mio. US Dollar x
$v58\_cost\_ccs(i)$ CCS costs (transport and injection) mio. US Dollar x
$s58\_energy\_price$ price for energy co-benefits of bioenergy CCS US Dollar per GJ x
$v58\_secondary\_energy(i,tech58)$ secondary energy use PJ per year x
$s58\_injection\_costs$ levelized costs for transporting and injecting C US Dollar per Mg C x
$v58\_biomass\_use(i,kbe58,tech58)$ biomass use mio. t DM per year x
$f58\_conversion\_eff(tech58)$ conversion efficiency - x
$s58\_DM\_to\_C$ conversion factor from DM biomass to carbon 0.45 x
$f58\_capture\_rate(tech58)$ capture rate - x
$pc58\_storage\_used(i)$ cumulative geological carbon storage in current time step Tg C x
$f58\_storage\_capacity(i)$ potential carbon storage capacities Tg C x

The last columns of the table indicate the usage in the different realizations (numbered with capital letters)

Developer(s)

Florian Humpenöder, Jan Philipp Dietrich

See Also

core, 57_maccs, overview

References

1 Humpenöder F, Popp A, Dietrich J P, Klein D, Lotze-Campen H, Bonsch M, Bodirsky B L, Weindl I, Stevanovic M and Müller C 2014 Investigating afforestation and bioenergy CCS as climate change mitigation strategies Environ. Res. Lett. 9 064029

2 Bradshaw J, Bachu S, Bonijoly D, Burruss R, Holloway S, Christensen N P and Mathiassen O M 2007 CO2 storage capacity estimation: Issues and development of standards International Journal of Greenhouse Gas Control 1 62–8

3 Klein D, Luderer G, Kriegler E, Strefler J, Bauer N, Leimbach M, Popp A, Dietrich J P, Humpenöder F, Lotze-Campen H and Edenhofer O 2014 The value of bioenergy in low stabilization scenarios: an assessment using REMIND-MAgPIE Climatic Change 123 705–18